When.com Web Search

  1. Ad

    related to: derivatives in math definition

Search results

  1. Results From The WOW.Com Content Network
  2. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  3. Derivation (differential algebra) - Wikipedia

    en.wikipedia.org/wiki/Derivation_(differential...

    In mathematics, a derivation is a function on an algebra that generalizes certain features of the derivative operator. Specifically, given an algebra A over a ring or a field K, a K-derivation is a K-linear map D : A → A that satisfies Leibniz's law: = + ().

  4. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}

  5. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Equations involving derivatives are called differential equations and are fundamental in describing natural phenomena. Derivatives and their generalizations appear in many fields of mathematics, such as complex analysis, functional analysis, differential geometry, measure theory, and abstract algebra.

  6. Differential (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Differential_(mathematics)

    In mathematics, differential refers to several related notions [1] derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions. [2] The term is used in various branches of mathematics such as calculus, differential geometry, algebraic geometry and algebraic topology.

  7. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ⁡ ( y , x ) . {\displaystyle \arctan(y,x).}

  8. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  9. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    In mathematics, the total derivative of a function f at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with respect to all of its arguments, not just a single one. In many situations, this is the same as ...