Search results
Results From The WOW.Com Content Network
In logic, mathematics and linguistics, and is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as ∧ {\displaystyle \wedge } [ 1 ] or & {\displaystyle \&} or K {\displaystyle K} (prefix) or × {\displaystyle \times } or ⋅ {\displaystyle \cdot } [ 2 ] in ...
In English, as in many other languages, disjunction is expressed by a coordinating conjunction. Other languages express disjunctive meanings in a variety of ways, though it is unknown whether disjunction itself is a linguistic universal. In many languages such as Dyirbal and Maricopa, disjunction is marked using a verb suffix.
In propositional logic and Boolean algebra, there is a duality between conjunction and disjunction, [1] [2] [3] also called the duality principle. [ 4 ] [ 5 ] [ 6 ] It is the most widely known example of duality in logic. [ 1 ]
Figure 2. Venn diagrams for conjunction, disjunction, and complement. For conjunction, the region inside both circles is shaded to indicate that x ∧ y is 1 when both variables are 1. The other regions are left unshaded to indicate that x ∧ y is 0 for the other three combinations. The second diagram represents disjunction x ∨ y by shading ...
Both conjunction and disjunction are associative, commutative and idempotent in classical logic, most varieties of many-valued logic and intuitionistic logic. The same is true about distributivity of conjunction over disjunction and disjunction over conjunction, as well as for the absorption law.
In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs.
Exclusive or, exclusive disjunction, exclusive alternation, logical non-equivalence, or logical inequality is a logical operator whose negation is the logical biconditional. With two inputs, XOR is true if and only if the inputs differ (one is true, one is false). With multiple inputs, XOR is true if and only if the number of true inputs is odd ...
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.