When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Surface tension - Wikipedia

    en.wikipedia.org/wiki/Surface_tension

    Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...

  3. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Force per unit oriented surface area Pa L −1 M T −2: order 2 tensor Surface tension: γ: Energy change per unit change in surface area N/m or J/m 2: M T −2: Thermal conductance κ (or) λ: Measure for the ease with which an object conducts heat W/K L 2 M T −3 Θ −1: extensive Thermal conductivity: λ: Measure for the ease with which a ...

  4. Ohnesorge number - Wikipedia

    en.wikipedia.org/wiki/Ohnesorge_number

    This is often used to relate to free surface fluid dynamics such as dispersion of liquids in gases and in spray technology. [3] [4] In inkjet printing, liquids whose Ohnesorge number are in the range 0.1 < Oh < 1.0 are jettable (1<Z<10 where Z is the reciprocal of the Ohnesorge number). [1] [5]

  5. Young–Laplace equation - Wikipedia

    en.wikipedia.org/wiki/Young–Laplace_equation

    In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.

  6. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  7. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    The vector T may be regarded as the sum of two components: the normal stress (compression or tension) perpendicular to the surface, and the shear stress that is parallel to the surface. If the normal unit vector n of the surface (pointing from Q towards P) is assumed fixed, the normal component can be expressed by a single number, the dot ...

  8. Marangoni number - Wikipedia

    en.wikipedia.org/wiki/Marangoni_number

    The Marangoni number for a simple liquid of viscosity with a surface tension change over a distance parallel to the surface, can be estimated as follows. Note that we assume that L {\displaystyle L} is the only length scale in the problem, which in practice implies that the liquid be at least L {\displaystyle L} deep.

  9. Dyne - Wikipedia

    en.wikipedia.org/wiki/Dyne

    The dyne per centimetre is a unit traditionally used to measure surface tension. For example, the surface tension of distilled water is 71.99 dyn/cm at 25 °C (77 °F). [4] (In SI units this is 71.99 × 10 −3 N/m or 71.99 mN/m.)