Ad
related to: poisson ratio k to m equation converter calculator worksheet
Search results
Results From The WOW.Com Content Network
Poisson's ratio of a material defines the ratio of transverse strain (x direction) to the axial strain (y direction)In materials science and solid mechanics, Poisson's ratio (symbol: ν ()) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading.
where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both E {\displaystyle E} , a material property, and I {\displaystyle I} , the physical geometry of the beam.
Conversion formulae Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
2 Poisson's ratio. 3 Bulk modulus. 4 Shear modulus. 5 References. 6 See also. Toggle the table of contents. Elastic properties of the elements (data page) 1 language.
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
The way the equation is defined won't give you a poisson's ratio of 0.5 for a perfectly incompressible material. It gives a ratio of 2 as defined in the article. Draw a quick before and after square diagram to see what I mean.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The coefficients u i are still found by solving a system of linear equations, but the matrix representing the system is markedly different from that for the ordinary Poisson problem. In general, to each scalar elliptic operator L of order 2 k , there is associated a bilinear form B on the Sobolev space H k , so that the weak formulation of the ...