Search results
Results From The WOW.Com Content Network
It can only choose a new state, the result of following the transition. A pushdown automaton (PDA) differs from a finite state machine in two ways: It can use the top of the stack to decide which transition to take. It can manipulate the stack as part of performing a transition. A pushdown automaton reads a given input string from left to right.
The two are not equivalent for the deterministic pushdown automaton (although they are for the non-deterministic pushdown automaton). The languages accepted by empty stack are those languages that are accepted by final state and are prefix-free: no word in the language is the prefix of another word in the language. [2] [3]
The halting problem for a register machine: a finite-state automaton with no inputs and two counters that can be incremented, decremented, and tested for zero. Universality of a nondeterministic pushdown automaton: determining whether all words are accepted. The problem whether a tag system halts.
The () parser is a deterministic pushdown automaton with the ability to peek on the next input symbols without reading. This peek capability can be emulated by storing the lookahead buffer contents in the finite state space, since both buffer and input alphabet are finite in size.
Computer scientists define a language that can be accepted by a pushdown automaton as a Context-free language, which can be specified as a Context-free grammar. The language consisting of strings with equal numbers of 'a's and 'b's, which we showed was not a regular language, can be decided by a push-down automaton.
Nested words over the alphabet = {,, …,} can be encoded into "ordinary" words over the tagged alphabet ^, in which each symbol a from Σ has three tagged counterparts: the symbol a for encoding a call position in a nested word labelled with a, the symbol a for encoding a return position labelled with a, and finally the symbol a itself for representing an internal position labelled with a.
A more powerful but still not Turing-complete extension of finite automata is the category of pushdown automata and context-free grammars, which are commonly used to generate parse trees in an initial stage of program compiling. Further examples include some of the early versions of the pixel shader languages embedded in Direct3D and OpenGL ...
Moreover, this approach often results in smaller lexers, [1] as re2c applies a number of optimizations such as DFA minimization and the construction of tunnel automaton. [9] Another distinctive feature of re2c is its flexible interface: instead of assuming a fixed program template, re2c lets the programmer write most of the interface code and ...