When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Drift velocity - Wikipedia

    en.wikipedia.org/wiki/Drift_velocity

    The formula for evaluating the drift velocity of charge carriers in a material of constant cross-sectional area is given by: [1] =, where u is the drift velocity of electrons, j is the current density flowing through the material, n is the charge-carrier number density, and q is the charge on the charge-carrier.

  3. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    Recall that by definition, mobility is dependent on the drift velocity. The main factor determining drift velocity (other than effective mass) is scattering time, i.e. how long the carrier is ballistically accelerated by the electric field until it scatters (collides) with something that changes its direction and/or energy. The most important ...

  4. Drift current - Wikipedia

    en.wikipedia.org/wiki/Drift_current

    The drift velocity is the average velocity of the charge carriers in the drift current. The drift velocity, and resulting current, is characterized by the mobility; for details, see electron mobility (for solids) or electrical mobility (for a more general discussion). See drift–diffusion equation for the way that the drift current, diffusion ...

  5. Speed of electricity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_electricity

    The drift velocity deals with the average velocity of a particle, such as an electron, due to an electric field. In general, an electron will propagate randomly in a conductor at the Fermi velocity. [5] Free electrons in a conductor follow a random path. Without the presence of an electric field, the electrons have no net velocity.

  6. Electrical mobility - Wikipedia

    en.wikipedia.org/wiki/Electrical_mobility

    In other words, the electrical mobility of the particle is defined as the ratio of the drift velocity to the magnitude of the electric field: =. For example, the mobility of the sodium ion (Na +) in water at 25 °C is 5.19 × 10 −8 m 2 /(V·s). [1]

  7. Einstein relation (kinetic theory) - Wikipedia

    en.wikipedia.org/wiki/Einstein_relation_(kinetic...

    μ is the "mobility", or the ratio of the particle's terminal drift velocity to an applied force, μ = v d /F; k B is the Boltzmann constant; T is the absolute temperature. This equation is an early example of a fluctuation-dissipation relation. [7]

  8. ‘ميل سيراً على الأقدام 1000’ by Huffington Post

    testkitchen.huffingtonpost.com/1000-miles-arabic

    سبع دول، محيط، وأكثر من ألف ميل بينهم وبين أحلامهم لمستقبل أفضل.

  9. Set and drift - Wikipedia

    en.wikipedia.org/wiki/Set_and_drift

    The term “set and drift” is used to describe external forces that affect a boat and keep it from following an intended course. To understand and calculate set and drift, one needs to first understand currents. Ocean currents are the horizontal movements of water from one location to another.