Search results
Results From The WOW.Com Content Network
[nb 1] Earth's orbital speed averages 29.78 km/s (19 mi/s; 107,208 km/h; 66,616 mph), which is fast enough to cover the planet's diameter in 7 minutes and the distance to the Moon in 4 hours. [3] The point towards which the Earth in its solar orbit is directed at any given instant is known as the "apex of the Earth's way". [4] [5]
ϖ = Ω + ω in separate planes. In celestial mechanics, the longitude of the periapsis, also called longitude of the pericenter, of an orbiting body is the longitude (measured from the point of the vernal equinox) at which the periapsis (closest approach to the central body) would occur if the body's orbit inclination were zero.
Geosynchronous orbit (GSO): An orbit around the Earth with a period equal to one sidereal day, which is Earth's average rotational period of 23 hours, 56 minutes, 4.091 seconds. For a nearly circular orbit, this implies an altitude of approximately 35,786 kilometers (22,236 mi). The orbit's inclination and eccentricity may not necessarily be zero.
It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular ...
The actual Hill radius for the Earth-Moon pair is on the order of 60,000 km (i.e., extending less than one-sixth the distance of the 378,000 km between the Moon and the Earth). [9] In the Earth-Sun example, the Earth (5.97 × 10 24 kg) orbits the Sun (1.99 × 10 30 kg) at a distance of 149.6 million km, or one astronomical unit (AU). The Hill ...
For orbital periods longer than the Earth's rotational period, an increase in the orbital period corresponds to a longitudinal stretching out of the (apparent retrograde) ground track. A satellite whose orbital period is equal to the rotational period of the Earth is said to be in a geosynchronous orbit. Its ground track will have a "figure ...
Orbital mechanics require that the duration of the seasons be proportional to the area of Earth's orbit swept between the solstices and equinoxes, so when the orbital eccentricity is extreme, the seasons that occur on the far side of the orbit can be substantially longer in duration.
Earth's orbital plane is known as the ecliptic plane, and Earth's tilt is known to astronomers as the obliquity of the ecliptic, being the angle between the ecliptic and the celestial equator on the celestial sphere. [6] It is denoted by the Greek letter Epsilon ε. Earth currently has an axial tilt of about 23.44°. [7]