When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Converse (logic) - Wikipedia

    en.wikipedia.org/wiki/Converse_(logic)

    The white area shows where the statement is false. Let S be a statement of the form P implies Q (P → Q). Then the converse of S is the statement Q implies P (Q → P). In general, the truth of S says nothing about the truth of its converse, [2] unless the antecedent P and the consequent Q are logically equivalent.

  3. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    The converse is "If an object has color, then it is red." Objects can have other colors, so the converse of our statement is false. The negation is "There exists a red object that does not have color." This statement is false because the initial statement which it negates is true.

  4. Converse relation - Wikipedia

    en.wikipedia.org/wiki/Converse_relation

    The converse relation does satisfy the (weaker) axioms of a semigroup with involution: () = and () =. [12] Since one may generally consider relations between different sets (which form a category rather than a monoid, namely the category of relations Rel ), in this context the converse relation conforms to the axioms of a dagger category (aka ...

  5. Affirming the consequent - Wikipedia

    en.wikipedia.org/wiki/Affirming_the_consequent

    In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...

  6. Casey's theorem - Wikipedia

    en.wikipedia.org/wiki/Casey's_theorem

    Casey's theorem and its converse can be used to prove a variety of statements in Euclidean geometry. For example, the shortest known proof [ 1 ] : 411 of Feuerbach's theorem uses the converse theorem.

  7. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    Euclid did not postulate the converse of his fifth postulate, which is one way to distinguish Euclidean geometry from elliptic geometry. The Elements contains the proof of an equivalent statement (Book I, Proposition 27): If a straight line falling on two straight lines make the alternate angles equal to one another, the straight lines will be ...

  8. Geometric mean theorem - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean_theorem

    The theorem can also be thought of as a special case of the intersecting chords theorem for a circle, since the converse of Thales' theorem ensures that the hypotenuse of the right angled triangle is the diameter of its circumcircle. [1] The converse statement is true as well.

  9. Desargues's theorem - Wikipedia

    en.wikipedia.org/wiki/Desargues's_theorem

    Under the standard duality of plane projective geometry (where points correspond to lines and collinearity of points corresponds to concurrency of lines), the statement of Desargues's theorem is self-dual: axial perspectivity is translated into central perspectivity and vice versa. The Desargues configuration (below) is a self-dual configuration.