Search results
Results From The WOW.Com Content Network
Cellular respiration is the process by which biological fuels are broken down in the presence of a hydrogen acceptor, such as oxygen, to drive the production of adenosine triphosphate (ATP), which stores chemical energy in a biologically accessible form.
Although physiologic respiration is necessary to sustain cellular respiration and thus life in animals, the processes are distinct: cellular respiration takes place in individual cells of the organism, while physiologic respiration concerns the diffusion and transport of metabolites between the organism and the external environment.
ADP can be converted, or powered back to ATP through the process of releasing the chemical energy available in food; in humans, this is constantly performed via aerobic respiration in the mitochondria. [2] Plants use photosynthetic pathways to convert and store energy from sunlight, also conversion of ADP to ATP. [3]
The equation for the reaction of glucose to form lactic acid is: C 6 H 12 O 6 + 2 ADP + 2 P i → 2 CH 3 CH(OH)COOH + 2 ATP + 2 H 2 O. Anaerobic respiration is respiration in the absence of O 2. Prokaryotes can utilize a variety of electron acceptors. These include nitrate, sulfate, and carbon dioxide.
Maintenance respiration, the amount of cellular respiration required for an organism to maintain itself in a constant state; Respiration (physiology), transporting oxygen and carbon dioxide between cells and the external environment Respiratory system, the anatomical system of an organism used for respiration
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.
This equation is a summary of what happens in three series of biochemical reactions: glycolysis, the Krebs cycle (also known as the Citric acid cycle), and oxidative phosphorylation. C 6 H 12 O 6 + 6 O 2 + 38 ADP + 38 phosphate → 6 CO 2 + 44 H 2 O + 38 ATP. In Oxidative phosphorylation, ATP is synthesized from ADP and a phosphate using ATP ...
The chemical equation of photosynthesis is 6 CO 2 (carbon dioxide) and 6 H 2 O (water), which in the presence of sunlight makes C 6 H 12 O 6 (glucose) and 6 O 2 (oxygen). Photosynthesis uses electrons on the carbon atoms as the repository for the energy obtained from sunlight. [72] Respiration is the opposite of photosynthesis.