Search results
Results From The WOW.Com Content Network
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
In astrophysics, an event horizon is a boundary beyond which events cannot affect an outside observer. Wolfgang Rindler coined the term in the 1950s. [1]In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact objects that even light cannot escape. [2]
[7] [8] This can happen through the Penrose process inside the black hole's ergosphere, in the volume outside its event horizon. [9] In some cases of energy extraction, a rotating black hole may gradually reduce to a Schwarzschild black hole, the minimum configuration from which no further energy can be extracted, although the Kerr black hole's ...
The extension of the exterior region of the Schwarzschild vacuum solution inside the event horizon of a spherically symmetric black hole is not static inside the horizon, and the family of (spacelike) nested spheres cannot be extended inside the horizon, so the Schwarzschild chart for this solution necessarily breaks down at the horizon.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A horizon is a boundary in spacetime satisfying prescribed conditions. There are several types of horizons that play a role in Albert Einstein 's theory of general relativity : Absolute horizon , a boundary in spacetime in general relativity inside of which events cannot affect an external observer
As the Schwarzschild radius is linearly related to mass, while the enclosed volume corresponds to the third power of the radius, small black holes are therefore much more dense than large ones. The volume enclosed in the event horizon of the most massive black holes has an average density lower than main sequence stars.
The black hole event horizon bordering exterior region I would coincide with a Schwarzschild t-coordinate of + while the white hole event horizon bordering this region would coincide with a Schwarzschild t-coordinate of , reflecting the fact that in Schwarzschild coordinates an infalling particle takes an infinite coordinate time to reach the ...