Search results
Results From The WOW.Com Content Network
In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...
In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of ...
In logic, an inverse is a type of conditional sentence which is an immediate inference made from another conditional sentence. More specifically, given a conditional sentence of the form P → Q {\displaystyle P\rightarrow Q} , the inverse refers to the sentence ¬ P → ¬ Q {\displaystyle \neg P\rightarrow \neg Q} .
The inverse is "If a polygon is not a quadrilateral, then it does not have four sides." In this case, unlike the last example, the inverse of the statement is true. The converse is "If a polygon has four sides, then it is a quadrilateral." Again, in this case, unlike the last example, the converse of the statement is true.
Confusion of the inverse, also called the conditional probability fallacy or the inverse fallacy, is a logical fallacy whereupon a conditional probability is equated with its inverse; that is, given two events A and B, the probability of A happening given that B has happened is assumed to be about the same as the probability of B given A, when there is actually no evidence for this assumption.
The San Francisco 49ers suspended linebacker De’Vondre Campbell for the rest of the regular season after he refused to enter a game after losing his starting job. General manager John Lynch ...
One way to demonstrate the invalidity of this argument form is with an example that has true premises but an obviously false conclusion. For example:
Productive vs. nonproductive cough. You can further drill a cough down into a productive or nonproductive cough. “A productive cough is a cough that produces phlegm,” Dr. Youssef says.