When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5) , and the same number 21 is also the GCD of 105 and 252 − 105 = 147 .

  4. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    Greatest common divisor = 2 × 2 × 3 = 12 Product = 2 × 2 × 2 × 2 × 3 × 2 × 2 × 3 × 3 × 5 = 8640. This also works for the greatest common divisor (gcd), except that instead of multiplying all of the numbers in the Venn diagram, one multiplies only the prime factors that are in the intersection. Thus the gcd of 48 and 180 is 2 × 2 × ...

  5. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    As an example, the greatest common divisor of 15 and 69 is 3, and 3 can be written as a combination of 15 and 69 as 3 = 15 × (−9) + 69 × 2, with Bézout coefficients −9 and 2. Many other theorems in elementary number theory, such as Euclid's lemma or the Chinese remainder theorem , result from Bézout's identity.

  6. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    If the right-hand side of the equation is divisible by 13, then the left-hand side is also divisible by 13. Let g represent the greatest common divisor of a, b, and c. Then (a, b, c) may be written as a = gx, b = gy, and c = gz where the three numbers (x, y, z) are pairwise coprime. In other words, the greatest common divisor (GCD) of each pair ...

  7. Coin problem - Wikipedia

    en.wikipedia.org/wiki/Coin_problem

    The Frobenius number exists as long as the set of coin denominations is setwise coprime. There is an explicit formula for the Frobenius number when there are only two different coin denominations, and , where the greatest common divisor of these two numbers is 1: . If the number of coin denominations is three or more, no explicit formula is known.

  8. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. Every Pythagorean triple can be scaled to a unique primitive Pythagorean triple by dividing (a, b, c) by their greatest common divisor. Conversely, every Pythagorean triple can be obtained by multiplying the elements of a primitive Pythagorean triple by a ...

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    An economical number has been defined as a frugal number, but also as a number that is either frugal or equidigital. gcd(m, n) (greatest common divisor of m and n) is the product of all prime factors which are both in m and n (with the smallest multiplicity for m and n).