Search results
Results From The WOW.Com Content Network
Ecosystems return this carbon through animal respiration, and plant respiration. [4] This constant cycle of carbon through the system is not the only element being transferred. In animal and plant respiration these living beings take in glucose and oxygen while emitting energy, carbon dioxide, and water as waste.
Anaerobic respiration is a critical component of the global nitrogen, iron, sulfur, and carbon cycles through the reduction of the oxyanions of nitrogen, sulfur, and carbon to more-reduced compounds. The biogeochemical cycling of these compounds, which depends upon anaerobic respiration, significantly impacts the carbon cycle and global warming .
[37] [63] [64] Slurry-only systems are generally cheaper, but generate far less energy than those using crops, such as maize and grass silage; by using a modest amount of crop material (30%), an anaerobic digestion plant can increase energy output tenfold for only three times the capital cost, relative to a slurry-only system. [65]
Sea slugs respire through a gill (or ctenidium). Aquatic respiration is the process whereby an aquatic organism exchanges respiratory gases with water, obtaining oxygen from oxygen dissolved in water and excreting carbon dioxide and some other metabolic waste products into the water.
In both aerobic and anaerobic systems the growing and reproducing microorganisms within them require a source of elemental oxygen to survive. [1] In an anaerobic system there is an absence of gaseous oxygen. In an anaerobic digester, gaseous oxygen is prevented from entering the system through physical containment in sealed tanks.
Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]]. [2] [better source needed] Respiration can be either aerobic, requiring oxygen, or anaerobic; some organisms can switch between aerobic and anaerobic respiration. [3] [better source needed]
Facultative anaerobes can grow with or without oxygen because they can metabolize energy aerobically or anaerobically. They gather mostly at the top because aerobic respiration generates more adenosine triphosphate (ATP) than either fermentation or anaerobic respiration. Microaerophiles need oxygen because they cannot ferment or respire ...
3: Facultative anaerobes can grow with or without oxygen because they can metabolise energy aerobically or anaerobically. They gather mostly at the top because aerobic respiration generates more ATP than either fermentation or anaerobic respiration. 4: Microaerophiles need oxygen because they cannot ferment or respire anaerobically. However ...