When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    The QR decomposition via Givens rotations is the most involved to implement, as the ordering of the rows required to fully exploit the algorithm is not trivial to determine. However, it has a significant advantage in that each new zero element a i j {\displaystyle a_{ij}} affects only the row with the element to be zeroed ( i ) and a row above ...

  3. RRQR factorization - Wikipedia

    en.wikipedia.org/wiki/RRQR_factorization

    An RRQR factorization or rank-revealing QR factorization is a matrix decomposition algorithm based on the QR factorization which can be used to determine the rank of a matrix. [1] The singular value decomposition can be used to generate an RRQR, but it is not an efficient method to do so. [2] An RRQR implementation is available in MATLAB. [3]

  4. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    Instead, the QR algorithm works with a complete basis of vectors, using QR decomposition to renormalize (and orthogonalize). For a symmetric matrix A , upon convergence, AQ = QΛ , where Λ is the diagonal matrix of eigenvalues to which A converged, and where Q is a composite of all the orthogonal similarity transforms required to get there.

  5. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    The pivot or pivot element is the element of a matrix, or an array, which is selected first by an algorithm (e.g. Gaussian elimination, simplex algorithm, etc.), to do certain calculations. In the case of matrix algorithms, a pivot entry is usually required to be at least distinct from zero, and often distant from it; in this case finding this ...

  6. Givens rotation - Wikipedia

    en.wikipedia.org/wiki/Givens_rotation

    This new matrix A 3 is the upper triangular matrix needed to perform an iteration of the QR decomposition. Q is now formed using the transpose of the rotation matrices in the following manner: Q = G 1 T G 2 T . {\displaystyle Q=G_{1}^{T}\,G_{2}^{T}.}

  7. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    In the theory of Lie group decompositions, it is generalized by the Iwasawa decomposition. The application of the Gram–Schmidt process to the column vectors of a full column rank matrix yields the QR decomposition (it is decomposed into an orthogonal and a triangular matrix).

  8. LAPACK - Wikipedia

    en.wikipedia.org/wiki/LAPACK

    The codes for the different kind of matrices are reported below; the actual data are stored in a different format depending on the specific kind; e.g., when the code DI is given, the subroutine expects a vector of length n containing the elements on the diagonal, while when the code GE is given, the subroutine expects an n×n array containing ...

  9. Talk:QR algorithm - Wikipedia

    en.wikipedia.org/wiki/Talk:QR_algorithm

    QR decomposition should have a link to here, but they are different. QR iteration (this page) uses QR decomposition to find eigenvalues. If anything, this article could be expanded into a series of articles including multishift versions and the modern forms of the algorithm that do the QR decomposition only in a very hidden implicit form.--