Search results
Results From The WOW.Com Content Network
In chemistry, dehydrogenation is a chemical reaction that involves the removal of hydrogen, usually from an organic molecule. It is the reverse of hydrogenation . Dehydrogenation is important, both as a useful reaction and a serious problem.
Formally, dehydrogenation is a redox process. Dehydrogenative aromatization is the reverse of arene hydrogenation. As such, hydrogenation catalysts are effective for the reverse reaction. Platinum-catalyzed dehydrogenations of cyclohexanes and related feedstocks are the largest scale applications of this reaction (see above). [1]
Oxidoreductases, enzymes that catalyze oxidation-reduction reactions, constitute Class EC 1 of the IUBMB classification of enzyme-catalyzed reactions. [2] Any of these may be called dehydrogenases, especially those in which NAD + is the electron acceptor (oxidant), but reductase is also used when the physiological emphasis on reduction of the substrate, and oxidase is used only when O 2 is the ...
Redox reactions (see list of oxidants and reductants) Reduction; Reductive elimination; Reppe synthesis; Riley oxidation; Salt metathesis; Sarett oxidation; Sharpless epoxidation; Shell higher olefin process; Silylation; Simmons–Smith reaction; Sonogashira coupling; Staudinger reaction; Stille reaction; Sulfidation; Suzuki reaction ...
The dehydrogenation also produces significant amounts of byproduct hydrogen gas, which is fed into other refinery processes such as hydrocracking. A side reaction is hydrogenolysis, which produces light hydrocarbons of lower value, such as methane, ethane, propane and butanes. Continuous Catalytic reforming (CCR) unit
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Decarboxylation reaction reactions are typically quite thermodynamically favorable due to the entropic contribution of cleaving a single molecule into two, one of which is a gas. Conversely, we can expect carboxylation reactions to be energy-requiring, and we should not be surprised to learn ATP hydrolysis is coupled to carboxylation. The most ...
The resulting hydroquinone is poorly soluble in typical reaction solvents (dioxane, benzene, alkanes), which facilitates workup. Solutions of DDQ in benzene are red, due to the formation of a charge-transfer complex. [9]