Search results
Results From The WOW.Com Content Network
Pressure as a function of the height above the sea level. There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : = [,, ()] ′, The second equation is applicable to the atmospheric layers in which the temperature is assumed not to ...
This then yields a more accurate formula, of the form =, where P h is the pressure at height h, P 0 is the pressure at reference point 0 (typically referring to sea level), m is the mass per air molecule, g is the acceleration due to gravity, h is height from reference point 0,
The pressure (force per unit area) at a given altitude is a result of the weight of the overlying atmosphere. If at a height of z the atmosphere has density ρ and pressure P, then moving upwards an infinitesimally small height dz will decrease the pressure by amount dP, equal to the weight of a layer of atmosphere of thickness dz.
Density and viscosity are recalculated at the resultant temperature and pressure using the ideal gas equation of state. Hot day, Cold day, Tropical, and Polar temperature profiles with altitude have been defined for use as performance references, such as United States Department of Defense MIL-STD-210C, and its successor MIL-HDBK-310.
In aviation, pressure altitude is the height above a standard datum plane (SDP), which is a theoretical level where the weight of the atmosphere is 29.921 inches of mercury (1,013.2 mbar; 14.696 psi) as measured by a barometer. [2]
The reading of a mercury barometer (in mm of Hg, for example) can be converted into an absolute pressure using the above equations. If we had a column of mercury 767 mm high, we could calculate the atmospheric pressure as (767 mm)•(133 kN/m 3) = 102 kPa.
The pressure exerted by a column of liquid of height h and density ρ is given by the hydrostatic pressure equation p = ρgh, where g is the gravitational acceleration. Fluid density and local gravity can vary from one reading to another depending on local factors, so the height of a fluid column does not define pressure precisely.
Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa ), which is equivalent to 1,013.25 millibars , [ 1 ] 760 mm Hg , 29.9212 inches Hg , or 14.696 psi . [ 2 ]