When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. String metric - Wikipedia

    en.wikipedia.org/wiki/String_metric

    The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another.

  3. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    The normalized angle, referred to as angular distance, between any two vectors and is a formal distance metric and can be calculated from the cosine similarity. [5] The complement of the angular distance metric can then be used to define angular similarity function bounded between 0 and 1, inclusive.

  4. Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Levenshtein_distance

    In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.

  5. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.

  6. Hamming space - Wikipedia

    en.wikipedia.org/wiki/Hamming_space

    The total distance between any two binary strings is then the total number of positions at which the corresponding bits are different, called the Hamming distance. [1] [2] Hamming spaces are named after American mathematician Richard Hamming, who introduced the concept in 1950. [3] They are used in the theory of coding signals and transmission.

  7. Approximate string matching - Wikipedia

    en.wikipedia.org/wiki/Approximate_string_matching

    The closeness of a match is measured in terms of the number of primitive operations necessary to convert the string into an exact match. This number is called the edit distance between the string and the pattern. The usual primitive operations are: [1] insertion: cot → coat; deletion: coat → cot; substitution: coat → cost

  8. Jaro–Winkler distance - Wikipedia

    en.wikipedia.org/wiki/Jaro–Winkler_distance

    The higher the Jaro–Winkler distance for two strings is, the less similar the strings are. The score is normalized such that 0 means an exact match and 1 means there is no similarity. The original paper actually defined the metric in terms of similarity, so the distance is defined as the inversion of that value (distance = 1 − similarity).

  9. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    Most of the mathematical functions are defined in <math.h> (<cmath> header in C++). The functions that operate on integers, such as abs, labs, div, and ldiv, are instead defined in the <stdlib.h> header (<cstdlib> header in C++). Any functions that operate on angles use radians as the unit of angle. [1]