Ads
related to: identify my bacteria by shape worksheet
Search results
Results From The WOW.Com Content Network
Bacteria display a large diversity of cell morphologies and arrangements. Bacterial cellular morphologies are the shapes that are characteristic of various types of bacteria and often key to their identification. Their direct examination under a light microscope enables the classification of these bacteria (and archaea).
Bacterial morphological plasticity refers to changes in the shape and size that bacterial cells undergo when they encounter stressful environments. Although bacteria have evolved complex molecular strategies to maintain their shape, many are able to alter their shape as a survival strategy in response to protist predators, antibiotics, the immune response, and other threats.
The formation of patterns in the growth of bacterial colonies has extensively been studied experimentally. Resulting morphologies appear to depend on the growth conditions. They include well known morphologies such as dense branched morphology (DBM) or diffusion-limited aggregation (DLA), but much complex patterns and temporal behaviour can be fou
Cell shape is generally characteristic of a given bacterial species, but can vary depending on growth conditions. Some bacteria have complex life cycles involving the production of stalks and appendages (e.g. Caulobacter) and some produce elaborate structures bearing reproductive spores (e.g. Myxococcus, Streptomyces).
Examining colonial morphology is the first step in the identification of an unknown microbe. The systematic assessment of the colonies' appearance, focusing on aspects like size, shape, colour, opacity, and consistency, provides clues to the identity of the organism, allowing microbiologists to select appropriate tests to provide a definitive ...
Cyanobacterial morphology refers to the form or shape of cyanobacteria. Cyanobacteria are a large and diverse phylum of bacteria defined by their unique combination of pigments and their ability to perform oxygenic photosynthesis. [2] [3] Cyanobacteria often live in colonial aggregates that can take a multitude of forms. [3]
Bacteria are categorized based on their shapes into three classes: cocci (spherical-shaped), bacillus (rod-shaped) and spirochetes (spiral-shaped) cells. In reality, this is a severe over-simplification as bacterial cells can be curved, bent, flattened, oblong spheroids and many more shapes. [ 13 ]
Although it has recently been shown that certain bacteria are capable of dramatically changing shape, pleomorphy remains a controversial concept. A well accepted example of pleomorphism is Helicobacter pylori, which exists as both a helix-shaped form (classified as a curved rod) and a coccoid form. [7]