When.com Web Search

  1. Ads

    related to: no of bijective functions formula worksheet pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    A function is bijective if it is both injective and surjective. A bijective function is also called a bijection or a one-to-one correspondence (not to be confused with one-to-one function, which refers to injection). A function is bijective if and only if every possible image is mapped to by exactly one argument. [1]

  3. List of types of functions - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_functions

    In other words, every element of the function's codomain is the image of at most one element of its domain. Surjective function: has a preimage for every element of the codomain, that is, the codomain equals the image. Also called a surjection or onto function. Bijective function: is both an injection and a surjection, and thus invertible.

  4. Bijection - Wikipedia

    en.wikipedia.org/wiki/Bijection

    A function f: R → R is bijective if and only if its graph meets every horizontal and vertical line exactly once. If X is a set, then the bijective functions from X to itself, together with the operation of functional composition (∘), form a group, the symmetric group of X, which is denoted variously by S(X), S X, or X! (X factorial).

  5. Horizontal line test - Wikipedia

    en.wikipedia.org/wiki/Horizontal_line_test

    Variations of the horizontal line test can be used to determine whether a function is surjective or bijective: The function f is surjective (i.e., onto) if and only if its graph intersects any horizontal line at least once. f is bijective if and only if any horizontal line will intersect the graph exactly once.

  6. Function composition - Wikipedia

    en.wikipedia.org/wiki/Function_composition

    The set of all bijective functions f: X → X (called permutations) forms a group with respect to function composition. This is the symmetric group , also sometimes called the composition group . In the symmetric semigroup (of all transformations) one also finds a weaker, non-unique notion of inverse (called a pseudoinverse) because the ...

  7. Bijective proof - Wikipedia

    en.wikipedia.org/wiki/Bijective_proof

    In combinatorics, bijective proof is a proof technique for proving that two sets have equally many elements, or that the sets in two combinatorial classes have equal size, by finding a bijective function that maps one set one-to-one onto the other. This technique can be useful as a way of finding a formula for the number of elements of certain ...

  8. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    He showed that if f is a function defined on X whose values are 2-valued functions on X, then the 2-valued function G(x) = 1 − f(x)(x) is not in the range of f. Bertrand Russell has a very similar proof in Principles of Mathematics (1903, section 348), where he shows that there are more propositional functions than objects.

  9. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).