Search results
Results From The WOW.Com Content Network
In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis , logistic regression [ 1 ] (or logit regression ) estimates the parameters of a logistic model (the coefficients in the linear or non linear ...
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.
Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model. [4]
Generalized linear models were formulated by John Nelder and Robert Wedderburn as a way of unifying various other statistical models, including linear regression, logistic regression and Poisson regression. [1] They proposed an iteratively reweighted least squares method for maximum likelihood estimation (MLE) of the model parameters. MLE ...
As with most statistical models, maximum likelihood estimation or Bayesian inference are the most common ways of identifying the parameters. [4] The estimated values indicate the direction and magnitude of the effect of each independent variable on the likelihood of the dependent variable falling into a higher category.
Finding a maximum likelihood solution typically requires taking the derivatives of the likelihood function with respect to all the unknown values, the parameters and the latent variables, and simultaneously solving the resulting equations. In statistical models with latent variables, this is usually impossible.
For example, a maximum-likelihood estimate is the point where the derivative of the likelihood function with respect to the parameter is zero; thus, a maximum-likelihood estimator is a critical point of the score function. [8] In many applications, such M-estimators can be thought of as estimating characteristics of the population.
As such it treats the same set of problems as does logistic regression using similar techniques. When viewed in the generalized linear model framework, the probit model employs a probit link function. [2] It is most often estimated using the maximum likelihood procedure, [3] such an estimation being called a probit regression.