When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  3. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    Farey sunburst of order 6, with 1 interior (red) and 96 boundary (green) points giving an area of 1 + ⁠ 96 / 2 ⁠ − 1 = 48 [1]. In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary.

  4. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Although the original problem asks for integer lattice points in a circle, there is no reason not to consider other shapes, for example conics; indeed Dirichlet's divisor problem is the equivalent problem where the circle is replaced by the rectangular hyperbola. [3]

  5. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  6. Point location - Wikipedia

    en.wikipedia.org/wiki/Point_location

    A point location query is performed by following a path in this graph, starting from the initial trapezoid, and at each step choosing the replacement trapezoid that contains the query point, until reaching a trapezoid that has not been replaced. The expected depth of a search in this digraph, starting from any query point, is O(log n).

  7. Closest pair of points problem - Wikipedia

    en.wikipedia.org/wiki/Closest_pair_of_points_problem

    The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...

  8. Point (geometry) - Wikipedia

    en.wikipedia.org/wiki/Point_(geometry)

    In geometry, a point is an abstract idealization of an exact position, without size, in physical space, [1] or its generalization to other kinds of mathematical spaces.As zero-dimensional objects, points are usually taken to be the fundamental indivisible elements comprising the space, of which one-dimensional curves, two-dimensional surfaces, and higher-dimensional objects consist; conversely ...

  9. Geohash - Wikipedia

    en.wikipedia.org/wiki/Geohash

    Geohashes can be used to find points in proximity to each other based on a common prefix. However, edge case locations close to each other but on opposite sides of the 180 degree meridian will result in Geohash codes with no common prefix (different longitudes for near physical locations). Points close to the North and South poles will have ...