Search results
Results From The WOW.Com Content Network
The polynomial P = x 4 + 1 is irreducible over Q but not over any finite field. On any field extension of F 2, P = (x + 1) 4. On every other finite field, at least one of −1, 2 and −2 is a square, because the product of two non-squares is a square and so we have; If =, then = (+) ().
In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f ( x ) {\displaystyle f(x)} is a polynomial, then x − a {\displaystyle x-a} is a factor of f ( x ) {\displaystyle f(x)} if and only if f ( a ) = 0 {\displaystyle f(a)=0} (that is, a {\displaystyle a} is a root of the polynomial).
For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x 2 – 4. Factorization is not usually considered meaningful within number systems possessing division , such as the real or complex numbers , since any x {\displaystyle x} can be trivially written as ( x y ) × ( 1 / y ) {\displaystyle ...
Below the factorization procedure is described for a bivariate operator of arbitrary form, of order 2 and 3. Explicit factorization formulas for an operator of the order n {\displaystyle n} can be found in [ 2 ] General invariants are defined in [ 3 ] and invariant formulation of the Beals-Kartashova factorization is given in [ 4 ]
The polynomial x 2 + 1 = 0 has roots ± i. Any real square matrix of odd degree has at least one real eigenvalue. For example, if the matrix is orthogonal, then 1 or −1 is an eigenvalue. The polynomial + has roots , +,, and thus can be factored as
Further note that (2) and (3) are dual to each other in the sense that for , we can apply the reflection formula to one of the identities and then swap and to obtain the other one. (As the g n ( x ) {\displaystyle g_{n}(x)} are polynomials, the validity extends from natural to all real values of x {\displaystyle x} .)
For given x, Padé approximants can be computed by Wynn's epsilon algorithm [2] and also other sequence transformations [3] from the partial sums = + + + + of the Taylor series of f, i.e., we have = ()!. f can also be a formal power series, and, hence, Padé approximants can also be applied to the summation of divergent series.
1-factorization of the Desargues graph: each color class is a 1-factor. The Petersen graph can be partitioned into a 1-factor (red) and a 2-factor (blue). However, the graph is not 1-factorable. In graph theory, a factor of a graph G is a spanning subgraph, i.e., a subgraph that has the same vertex set as G.