When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    If it is at a higher energy level, it is said to be excited, or any electrons that have higher energy than the ground state are excited. Such a species can be excited to a higher energy level by absorbing a photon whose energy is equal to the energy difference between the levels. Conversely, an excited species can go to a lower energy level by ...

  3. Atomic electron transition - Wikipedia

    en.wikipedia.org/wiki/Atomic_electron_transition

    The energy of an electron is determined by its orbit around the atom, The n = 0 orbit, commonly referred to as the ground state, has the lowest energy of all states in the system. In atomic physics and chemistry , an atomic electron transition (also called an atomic transition, quantum jump, or quantum leap) is an electron changing from one ...

  4. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Massenergy_equivalence

    Massenergy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  5. Pair production - Wikipedia

    en.wikipedia.org/wiki/Pair_production

    The photon's energy is converted to particle mass in accordance with Einstein's equation, E = mc 2; where E is energy, m is mass and c is the speed of light. The photon must have higher energy than the sum of the rest mass energies of an electron and positron (2 × 511 keV = 1.022 MeV, resulting in a photon wavelength of 1.2132 pm ) for the ...

  6. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0 N D = Number of atoms decayed at time t = + dimensionless dimensionless Decay rate, activity of a radioisotope: A = Bq = Hz = s −1 [T] −1: Decay constant: λ = / Bq = Hz = s −1

  7. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    A bound system is typically at a lower energy level than its unbound constituents because its mass must be less than the total mass of its unbound constituents. For systems with low binding energies, this "lost" mass after binding may be fractionally small, whereas for systems with high binding energies, the missing mass may be an easily ...

  8. Orders of magnitude (energy) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(energy)

    Mass-energy of the Andromeda galaxy (M31), ~0.8 trillion solar masses. [344] [345] 10 62 1–2×10 62 J: Total massenergy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way [346] 10 70: 1.462×10 70 J: Rough estimate of total massenergy of ordinary matter (atoms; baryons) present in the ...

  9. Faraday's laws of electrolysis - Wikipedia

    en.wikipedia.org/wiki/Faraday's_laws_of_electrolysis

    n is the amount of substance ("number of moles") liberated: = t is the total time the constant current was applied. For the case of an alloy whose constituents have different valencies, we have m = I t F × ∑ i w i v i M i {\displaystyle m={\frac {It}{F\times \sum _{i}{\frac {w_{i}v_{i}}{M_{i}}}}}} where w i represents the mass fraction of ...