Search results
Results From The WOW.Com Content Network
Nuclear fuel process A graph comparing nucleon number against binding energy Close-up of a replica of the core of the research reactor at the Institut Laue-Langevin. Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other nuclear devices to generate energy.
The most important isotopes of these elements in spent nuclear fuel are neptunium-237, americium-241, americium-243, curium-242 through -248, and californium-249 through -252. Plutonium and the minor actinides will be responsible for the bulk of the radiotoxicity and heat generation of spent nuclear fuel in the long term (300 to 20,000 years in ...
Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.
In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. [1] A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy in a system may be typified by either slow neutrons (i.e., a thermal system) or fast neutrons.
Diagram of an RTG used on the Cassini probe. A radioisotope thermoelectric generator (RTG, RITEG), sometimes referred to as a radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect.
SUDOKU. Play the USA TODAY Sudoku Game.. JUMBLE. Jumbles: FORTY HUTCH HAGGLE CHILLY. Answer: He’d planned to cut the tree so it ended up away from the house, but his plans — FELL THROUGH
SUDOKU. Play the USA TODAY Sudoku Game.. JUMBLE. Jumbles: VINYL GULCH RADISH OPAQUE. Answer: The pharaoh commissioned an artist to decorate his tomb. The result was — “HIRE-O-GLYPHICS”
129 I is one of the seven long-lived fission products that are produced in significant amounts. Its yield is 0.706% per fission of 235 U. [7] Larger proportions of other iodine isotopes such as 131 I are produced, but because these all have short half-lives, iodine in cooled spent nuclear fuel consists of about 5/6 129 I and 1/6 the only stable iodine isotope, 127 I.