Search results
Results From The WOW.Com Content Network
Where this is not possible, consideration should be given to possible activity variation. The equilibrium expression above is a function of the concentrations [A], [B] etc. of the chemical species in equilibrium. The equilibrium constant value can be determined if any one of these concentrations can be measured.
K 1, K 2 and DIC each have units of a concentration, e.g. mol/L. A Bjerrum plot is obtained by using these three equations to plot these three species against pH = −log 10 [H +] eq, for given K 1, K 2 and DIC. The fractions in these equations give the three species' relative proportions, and so if DIC is unknown, or the actual concentrations ...
For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium .
This method of calculating equilibrium chemical concentrations is useful for systems with a large number of different molecules. The use of k atomic element conservation equations for the mass constraint is straightforward, and replaces the use of the stoichiometric coefficient equations. [19]
The thermodynamic equilibrium constant, K ⊖, for the equilibrium + can be defined [15] as = {} {} {} where {ML} is the activity of the chemical species ML etc. K ⊖ is dimensionless since activity is dimensionless. Activities of the products are placed in the numerator, activities of the reactants are placed in the denominator.
Reaction kinetics: The reaction quotient can be used to study the kinetics of reversible reactions and determine rate laws, as it is related to the concentrations of reactants and products at any given time. Equilibrium constant determination: By measuring the concentrations of reactants and products at equilibrium, the equilibrium constant (K ...
A less ambitious goal is to determine the final equilibrium concentrations of the kinetic species, which is adequate for the interpretation of equilibrium binding data. A converse goal of receptor–ligand kinetics is to estimate the rate constants and/or dissociation constants of the receptors and ligands from experimental kinetic or ...
The free concentrations are calculated by solving the equations of mass-balance, and the concentrations of the complexes are calculated using the equilibrium constant definitions. A quantity corresponding to the observed quantity can then be calculated using physical principles such as the Nernst potential or Beer-Lambert law which relate the ...