Search results
Results From The WOW.Com Content Network
In formal terms, a directed graph is an ordered pair G = (V, A) where [1]. V is a set whose elements are called vertices, nodes, or points;; A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines.
A directed graph with three vertices and four directed edges (the double arrow represents an edge in each direction). A directed graph or digraph is a graph in which edges have orientations. In one restricted but very common sense of the term, [5] a directed graph is an ordered pair = (,) comprising:
In graph theory, reachability refers to the ability to get from one vertex to another within a graph. A vertex s {\displaystyle s} can reach a vertex t {\displaystyle t} (and t {\displaystyle t} is reachable from s {\displaystyle s} ) if there exists a sequence of adjacent vertices (i.e. a walk ) which starts with s {\displaystyle s} and ends ...
A directed graph is strongly connected if and only if it has an ear decomposition, a partition of the edges into a sequence of directed paths and cycles such that the first subgraph in the sequence is a cycle, and each subsequent subgraph is either a cycle sharing one vertex with previous subgraphs, or a path sharing its two endpoints with ...
1. For the transitive closure of a directed graph, see transitive. 2. A closure of a directed graph is a set of vertices that have no outgoing edges to vertices outside the closure. For instance, a sink is a one-vertex closure. The closure problem is the problem of finding a closure of minimum or maximum weight. co-
The yellow directed acyclic graph is the condensation of the blue directed graph. It is formed by contracting each strongly connected component of the blue graph into a single yellow vertex. Any directed graph may be made into a DAG by removing a feedback vertex set or a feedback arc set, a set of vertices or edges (respectively) that touches ...
For every pair of vertices in a connected graph, there exists at least one shortest path between the vertices, that is, there exists at least one path such that either the number of edges that the path passes through (for unweighted graphs) or the sum of the weights of the edges (for weighted graphs) is minimized. The betweenness centrality for ...
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).