Search results
Results From The WOW.Com Content Network
Sodium bicarbonate (IUPAC name: sodium hydrogencarbonate [9]), commonly known as baking soda or bicarbonate of soda, is a chemical compound with the formula NaHCO 3. It is a salt composed of a sodium cation (Na +) and a bicarbonate anion (HCO 3 −). Sodium bicarbonate is a white solid that is crystalline but often appears as a fine powder.
In aerodynamics, aerodynamic drag, also known as air resistance, is the fluid drag force that acts on any moving solid body in the direction of the air's freestream flow. [ 22 ] From the body's perspective (near-field approach), the drag results from forces due to pressure distributions over the body surface, symbolized D p r {\displaystyle D ...
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
In air, the same theory can be used to explain why small water droplets (or ice crystals) can remain suspended in air (as clouds) until they grow to a critical size and start falling as rain (or snow and hail). [6] Similar use of the equation can be made in the settling of fine particles in water or other fluids. [citation needed]
The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity. The effect of air resistance varies enormously depending on the size and geometry of the falling object—for example, the equations are hopelessly wrong for a feather, which ...
The equation is precise – it simply provides the definition of (drag coefficient), which varies with the Reynolds number and is found by experiment. Of particular importance is the u 2 {\displaystyle u^{2}} dependence on flow velocity, meaning that fluid drag increases with the square of flow velocity.
Isaac Newton's sine-squared law of air resistance is a formula that implies the force on a flat plate immersed in a moving fluid is proportional to the square of the sine of the angle of attack. Although Newton did not analyze the force on a flat plate himself, the techniques he used for spheres, cylinders, and conical bodies were later applied ...
The Kantrowitz limit therefore acts a "speed limit" - for a given ratio of tube area and pod area, there is a maximum speed that the pod can travel before flow around the pod chokes and air resistance sharply increases. [5] In order to break through the speed limit set by the Kantrowitz limit, there are two possible approaches.