When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Directional derivative - Wikipedia

    en.wikipedia.org/wiki/Directional_derivative

    In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...

  3. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The graph of =, with a straight line that is tangent to (,). The slope of the tangent line is equal to . (The axes of the graph do not use a 1:1 scale.) The derivative of a function is then simply the slope of this tangent line.

  4. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

  5. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    For any smooth function f on a Riemannian manifold (M, g), the gradient of f is the vector field ∇f such that for any vector field X, (,) =, that is, ((),) = (), where g x ( , ) denotes the inner product of tangent vectors at x defined by the metric g and ∂ X f is the function that takes any point x ∈ M to the directional derivative of f ...

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  7. Geometric calculus - Wikipedia

    en.wikipedia.org/wiki/Geometric_calculus

    The directional derivative is linear regarding its direction, that is: ∇ α a + β b = α ∇ a + β ∇ b . {\displaystyle \nabla _{\alpha a+\beta b}=\alpha \nabla _{a}+\beta \nabla _{b}.} From this follows that the directional derivative is the inner product of its direction by the vector derivative.

  8. Differentiable manifold - Wikipedia

    en.wikipedia.org/wiki/Differentiable_manifold

    Given a real valued function f on an n dimensional differentiable manifold M, the directional derivative of f at a point p in M is defined as follows. Suppose that γ(t) is a curve in M with γ(0) = p, which is differentiable in the sense that its composition with any chart is a differentiable curve in R n. Then the directional derivative of f ...

  9. Gateaux derivative - Wikipedia

    en.wikipedia.org/wiki/Gateaux_derivative

    In mathematics, the Gateaux differential or Gateaux derivative is a generalization of the concept of directional derivative in differential calculus. Named after René Gateaux , it is defined for functions between locally convex topological vector spaces such as Banach spaces .