When.com Web Search

  1. Ad

    related to: directional derivative of calculator math

Search results

  1. Results From The WOW.Com Content Network
  2. Directional derivative - Wikipedia

    en.wikipedia.org/wiki/Directional_derivative

    In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...

  3. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

  4. Geometric calculus - Wikipedia

    en.wikipedia.org/wiki/Geometric_calculus

    From this follows that the directional derivative is the inner product of its direction by the vector derivative. All needs to be observed is that the direction a {\displaystyle a} can be written a = ( a ⋅ e i ) e i {\displaystyle a=(a\cdot e^{i})e_{i}} , so that:

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the ... These are measured using directional derivatives. ... Online Derivative Calculator from ...

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Calculus is of vital importance in physics: many physical processes are described by equations involving derivatives, called differential equations. Physics is particularly concerned with the way quantities change and develop over time, and the concept of the " time derivative " — the rate of change over time — is essential for the precise ...

  8. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    The notion of a directional derivative of a function from multivariable calculus is extended to the notion of a covariant derivative of a tensor. Many concepts of analysis and differential equations have been generalized to the setting of Riemannian manifolds. A distance-preserving diffeomorphism between Riemannian manifolds is called an isometry.

  9. Covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Covariant_derivative

    The covariant derivative is a generalization of the directional derivative from vector calculus.As with the directional derivative, the covariant derivative is a rule, , which takes as its inputs: (1) a vector, u, defined at a point P, and (2) a vector field v defined in a neighborhood of P. [7]