When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    If a greedy algorithm can be proven to yield the global optimum for a given problem class, it typically becomes the method of choice because it is faster than other optimization methods like dynamic programming. Examples of such greedy algorithms are Kruskal's algorithm and Prim's algorithm for finding minimum spanning trees and the algorithm ...

  3. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method.

  4. Optimal substructure - Wikipedia

    en.wikipedia.org/wiki/Optimal_substructure

    Typically, a greedy algorithm is used to solve a problem with optimal substructure if it can be proven by induction that this is optimal at each step. [1] Otherwise, provided the problem exhibits overlapping subproblems as well, divide-and-conquer methods or dynamic programming may be used. If there are no appropriate greedy algorithms and the ...

  5. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    From a dynamic programming point of view, Dijkstra's algorithm is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method. [33] [34] [35] In fact, Dijkstra's explanation of the logic behind the algorithm: [36] Problem 2.

  6. Activity selection problem - Wikipedia

    en.wikipedia.org/wiki/Activity_selection_problem

    Unlike the unweighted version, there is no greedy solution to the weighted activity selection problem. However, a dynamic programming solution can readily be formed using the following approach: [1] Consider an optimal solution containing activity k. We now have non-overlapping activities on the left and right of k. We can recursively find ...

  7. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    One of the earliest applications of dynamic programming is the Held–Karp algorithm, which solves the problem in time (). [24] This bound has also been reached by Exclusion-Inclusion in an attempt preceding the dynamic programming approach. Solution to a symmetric TSP with 7 cities using brute force search.

  8. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    The following is a dynamic programming implementation (with Python 3) which uses a matrix to keep track of the optimal solutions to sub-problems, and returns the minimum number of coins, or "Infinity" if there is no way to make change with the coins given. A second matrix may be used to obtain the set of coins for the optimal solution.

  9. Matrix chain multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_chain_multiplication

    Using this cost function, we can write a dynamic programming algorithm to find the fastest way to concatenate a sequence of strings. However, this optimization is rather useless because we can straightforwardly concatenate the strings in time proportional to the sum of their lengths. A similar problem exists for singly linked lists.