Search results
Results From The WOW.Com Content Network
This is shown as the horizontal dotted gray line, which represents not a solution of the equation but the observed behavior. The points above , superheated liquid, and those below it, subcooled vapor, are metastable; a sufficiently strong disturbance causes them to transform to the stable alternative. These metastable regions are shown ...
The pressure a liquid exerts against the sides and bottom of a container depends on the density and the depth of the liquid. If atmospheric pressure is neglected, liquid pressure against the bottom is twice as great at twice the depth; at three times the depth, the liquid pressure is threefold; etc. Or, if the liquid is two or three times as ...
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a nearly constant volume independent of pressure. It is one of the four fundamental states of matter (the others being solid, gas, and plasma), and is the only state with a definite volume but no fixed shape.
Taking the pressure as zero at the surface, where z is zero, the constant will be zero, so the pressure inside the fluid, when it is subject to gravity, is =. So pressure increases with depth below the surface of a liquid, as z denotes the distance from the surface of the liquid into it. Any object with a non-zero vertical depth will have ...
The pressure on a pressure-temperature diagram (such as the water phase diagram shown) is the partial pressure of the substance in question. [1] The solidus is the temperature below which the substance is stable in the solid state. The liquidus is the temperature above which the substance is stable in a liquid state.
The change in pressure over distance dx is dp and flow velocity v = dx / dt . Apply Newton's second law of motion (force = mass × acceleration) and recognizing that the effective force on the parcel of fluid is −A dp. If the pressure decreases along the length of the pipe, dp is negative but the force resulting in flow is positive ...
When a capillary tube is inserted into a liquid, the liquid will rise or fall in the tube, due to an imbalance in pressure. The characteristic height is the distance from the bottom of the meniscus to the base, and exists when the Laplace pressure and the pressure due to gravity are balanced.
The liquid entry pressure (LEP) of a hydrophobic membrane is the pressure that must be applied to a dry membrane so that the liquid penetrates inside the membrane. LEP with the application in membrane distillation or pervaporation can be calculated as a first parameter to indicate how wettable a membrane is toward different liquid solutions.