When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Moving-cluster method - Wikipedia

    en.wikipedia.org/wiki/Moving-cluster_method

    The idea is that since all the stars share a common space velocity, they will appear to move towards a point of common convergence ("vanishing point") on the sky. This is essentially a perspective effect. Using the moving-cluster method, the distance to a given star cluster (in parsecs) can be determined using the following equation:

  3. Stellar rotation - Wikipedia

    en.wikipedia.org/wiki/Stellar_rotation

    Stars slowly lose mass by the emission of a stellar wind from the photosphere. The star's magnetic field exerts a torque on the ejected matter, resulting in a steady transfer of angular momentum away from the star. Stars with a rate of rotation greater than 15 km/s also exhibit more rapid mass loss, and consequently a faster rate of rotation decay.

  4. Stellar age estimation - Wikipedia

    en.wikipedia.org/wiki/Stellar_age_estimation

    However, when one can observe a red giant star with a known mass, one can calculate the main-sequence lifetime, [4] and thus the minimum age of star is known given that it is in an advanced stage of its evolution. As the star spends only about 1% of its total lifetime as a red giant, [5] this is an accurate method of determining age.

  5. Stellar structure - Wikipedia

    en.wikipedia.org/wiki/Stellar_structure

    The internal structure of a main sequence star depends upon the mass of the star. In stars with masses of 0.3–1.5 solar masses (M ☉), including the Sun, hydrogen-to-helium fusion occurs primarily via proton–proton chains, which do not establish a steep temperature gradient. Thus, radiation dominates in the inner portion of solar mass stars.

  6. Stellar evolution - Wikipedia

    en.wikipedia.org/wiki/Stellar_evolution

    Representative lifetimes of stars as a function of their masses The change in size with time of a Sun-like star Artist's depiction of the life cycle of a Sun-like star, starting as a main-sequence star at lower left then expanding through the subgiant and giant phases, until its outer envelope is expelled to form a planetary nebula at upper right Chart of stellar evolution

  7. Spectral sequence - Wikipedia

    en.wikipedia.org/wiki/Spectral_sequence

    In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by Jean Leray (1946a, 1946b), they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra.

  8. Here's why you might see 50 stars moving in sequence ... - AOL

    www.aol.com/news/starlink-elon-musk-161219731.html

    For premium support please call: 800-290-4726 more ways to reach us

  9. Main sequence - Wikipedia

    en.wikipedia.org/wiki/Main_sequence

    Nevertheless, very hot main-sequence stars are still sometimes called dwarfs, even though they have roughly the same size and brightness as the "giant" stars of that temperature. [21] The common use of "dwarf" to mean the main sequence is confusing in another way because there are dwarf stars that are not main-sequence stars.

  1. Related searches how to calculate convergent sequence of stars in the sky right now indiana

    convection of a starbreak up velocity of star
    star convection structurestellar star rotation rate