Ad
related to: magnetoelectric coupling coefficient of aluminum and water supply diagram
Search results
Results From The WOW.Com Content Network
In its most general form, the magnetoelectric effect (ME) denotes any coupling between the magnetic and the electric properties of a material. [ 1 ] [ 2 ] The first example of such an effect was described by Wilhelm Röntgen in 1888, who found that a dielectric material moving through an electric field would become magnetized. [ 3 ]
There have been reports of large magnetoelectric coupling at room-temperature in type-I multiferroics such as in the "diluted" magnetic perovskite (PbZr 0.53 Ti 0.47 O 3) 0.6 –(PbFe 1/2 Ta 1/2 O 3) 0.4 (PZTFT) in certain Aurivillius phases. Here, strong ME coupling has been observed on a microscopic scale using PFM under magnetic field among ...
The coupling coefficient is a convenient way to specify the relationship between a certain orientation of inductors with arbitrary inductance. Most authors define the range as 0 ≤ k < 1 {\displaystyle 0\leq k<1} , but some [ 28 ] define it as − 1 < k < 1 {\displaystyle -1<k<1\,} .
Coupling may be intentional or unintentional. Unintentional inductive coupling can cause signals from one circuit to be induced into a nearby circuit, this is called cross-talk, and is a form of electromagnetic interference. k is the coupling coefficient, Le1 and Le2 is the leakage inductance, M1 (M2) is the mutual inductance
A cross section through a linear motor placed above a thick aluminium slab. As the linear induction motor's field pattern sweeps to the left, eddy currents are left behind in the metal and this causes the field lines to lean. In a varying magnetic field, the induced currents exhibit diamagnetic-like repulsion effects.
In electronics, electric power and telecommunication, coupling is the transfer of electrical energy from one circuit to another, or between parts of a circuit. Coupling can be deliberate as part of the function of the circuit, or it may be undesirable, for instance due to coupling to stray fields .
MESO devices operate by the coupling of the magnetoelectric effect with the spin orbit coupling. [3] Specifically, the magnetoelectric effect will induce a change in magnetization within the device due to an induced electric field, which can then be read out by the spin orbit coupling component which converts it into an electric charge.
The Hall coefficient is defined as the ratio of the induced electric field to the product of the current density and the applied magnetic field. It is a characteristic of the material from which the conductor is made, since its value depends on the type, number, and properties of the charge carriers that constitute the current.