Search results
Results From The WOW.Com Content Network
Python versions up to 3.2 can be compiled to use them [clarification needed] instead of UTF-16; from version 3.3 onward, Unicode strings are stored in UTF-32 if there is at least 1 non-BMP character in the string, but with leading zero bytes optimized away "depending on the [code point] with the largest Unicode ordinal (1, 2, or 4 bytes)" to ...
Python 3.3 switched internal storage to use one of ISO-8859-1, UCS-2, or UTF-32 depending on the largest code point in the string. [31] Python 3.12 drops some functionality (for CPython extensions) to make it easier to migrate to UTF-8 for all strings. [32] Java originally used UCS-2, and added UTF-16 supplementary character support in J2SE 5.0.
Code points are commonly used in character encoding, where a code point is a numerical value that maps to a specific character.In character encoding code points usually represent a single grapheme—usually a letter, digit, punctuation mark, or whitespace—but sometimes represent symbols, control characters, or formatting. [4]
HTML and XML provide ways to reference Unicode characters when the characters themselves either cannot or should not be used. A numeric character reference refers to a character by its Universal Character Set/Unicode code point, and a character entity reference refers to a character by a predefined name. A numeric character reference uses the ...
Unicode equivalence is the specification by the Unicode character encoding standard that some sequences of code points represent essentially the same character. This feature was introduced in the standard to allow compatibility with pre-existing standard character sets , which often included similar or identical characters.
Some programming languages, such as Seed7, use UTF-32 as an internal representation for strings and characters. Recent versions of the Python programming language (beginning with 2.2) may also be configured to use UTF-32 as the representation for Unicode strings, effectively disseminating such encoding in high-level coded software.
A Unicode character is assigned a unique Name (na). [1] The name is composed of uppercase letters A–Z, digits 0–9, hyphen-minus and space.Some sequences are excluded: names beginning with a space or hyphen, names ending with a space or hyphen, repeated spaces or hyphens, and space after hyphen are not allowed.
Converts Unicode character codes, always given in hexadecimal, to their UTF-8 or UTF-16 representation in upper-case hex or decimal. Can also reverse this for UTF-8. The UTF-16 form will accept and pass through unpaired surrogates e.g. {{#invoke:Unicode convert|getUTF8|D835}} → D835.