When.com Web Search

  1. Ad

    related to: titanium fatigue life vs steel cut

Search results

  1. Results From The WOW.Com Content Network
  2. Fatigue limit - Wikipedia

    en.wikipedia.org/wiki/Fatigue_limit

    The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. [1] Some metals such as ferrous alloys and titanium alloys have a distinct limit, [ 2 ] whereas others such as aluminium and copper do not and will eventually fail even from ...

  3. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    Example of a HFMI treated steel highway bridge to avoid fatigue along the weld transition. Change material. Changes in the materials used in parts can also improve fatigue life. For example, parts can be made from better fatigue rated metals. Complete replacement and redesign of parts can also reduce if not eliminate fatigue problems.

  4. Corrosion fatigue - Wikipedia

    en.wikipedia.org/wiki/Corrosion_fatigue

    In true corrosion fatigue, the fatigue-crack-growth rate is enhanced by corrosion; this effect is seen in all three regions of the fatigue-crack growth-rate diagram. The diagram on the left is a schematic of crack-growth rate under true corrosion fatigue; the curve shifts to a lower stress-intensity-factor range in the corrosive environment.

  5. Critical plane analysis - Wikipedia

    en.wikipedia.org/wiki/Critical_plane_analysis

    Animation showing a series of crack orientations, each of which is evaluated for fatigue life during Critical plane analysis The chief advantage of critical plane analysis over earlier approaches like Sines rule , or like correlation against maximum principal stress or strain energy density , is the ability to account for damage on specific ...

  6. Goodman relation - Wikipedia

    en.wikipedia.org/wiki/Goodman_relation

    Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]

  7. Low-cycle fatigue - Wikipedia

    en.wikipedia.org/wiki/Low-cycle_fatigue

    ε f ' is an empirical constant known as the fatigue ductility coefficient defined by the strain intercept at 2N =1; c is an empirical constant known as the fatigue ductility exponent, commonly ranging from -0.5 to -0.7. Small c results in long fatigue life. ς f ' is a constant known as the fatigue strength coefficient

  8. Slip bands in metals - Wikipedia

    en.wikipedia.org/wiki/Slip_bands_in_metals

    PSB structure (adopted from [7]). Persistent slip-bands (PSBs) are associated with strain localisation due to fatigue in metals and cracking on the same plane. Transmission electron microscopy (TEM) and three-dimensional discrete dislocation dynamics (DDD [8]) simulation were used to reveal and understand dislocations type and arrangement/patterns to relate it to the sub-surface structure.

  9. Static fatigue - Wikipedia

    en.wikipedia.org/wiki/Static_fatigue

    Static fatigue tests can be used to determine the lifespan of a material with different loads and environmental conditions. [ 13 ] [ 14 ] However, accurately assessing a material's true static fatigue life presents challenges, as these tests often require an extended duration and there is significant variability in the results.