Search results
Results From The WOW.Com Content Network
For example, an ideal fuel cell operating at a temperature of 25 °C having gaseous hydrogen and gaseous oxygen as inputs and liquid water as the output could produce a theoretical maximum amount of electrical energy of 237.129 kJ (0.06587 kWh) per gram mol (18.0154 gram) of water produced and would require 48.701 kJ (0.01353 kWh) per gram mol ...
For example, heats of fusion and vaporization are usually of the order of 10 kJ·mol −1, bond energies are of the order of 100 kJ·mol −1, and ionization energies of the order of 1000 kJ·mol −1. [5] For this reason, it is common within the field of chemistry to quantify the enthalpy of reaction in units of kJ·mol −1. [6]
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings. One such equation involves the enthalpy change, which is denoted with Δ H {\displaystyle \Delta H} In variable form, a thermochemical equation would appear similar to the following:
Kilowatt-hours are a product of power and time, not a rate of change of power with time. Watts per hour (W/h) is a unit of a change of power per hour, i.e. an acceleration in the delivery of energy. It is used to measure the daily variation of demand (e.g. the slope of the duck curve ), or ramp-up behavior of power plants .
When discussing the chemical energy contained, there are different types which can be quantified depending on the intended purpose. One is the theoretical total amount of thermodynamic work that can be derived from a system, at a given temperature and pressure imposed by the surroundings, called exergy .
This thermal energy input of 1 kWh = 3.6 MJ = 3,412 Btu; Therefore, the heat rate of a 100% efficient plant is simply 1, or 1 kWh/kWh, or 3.6 MJ/kWh, or 3,412 Btu/kWh; To express the efficiency of a generator or power plant as a percentage, invert the value if dimensionless notation or same unit are used. For example:
In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. [1] The activation energy (E a) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [2]
Bond dissociation energy for the carbon monoxide (CO) triple bond, alternatively stated: 1072 kJ/mol; 11.11eV per molecule. [21] This is the strongest chemical bond known. 2.18×10 −18 J: Ground state ionization energy of hydrogen (13.6 eV) 10 −17 2–2000×10 −17 J Energy range of X-ray photons [8] 10 −16 10 −15: femto-(fJ) 3 × 10 ...