Ads
related to: how to calculate watts btu needed for room
Search results
Results From The WOW.Com Content Network
U = Overall heat transfer coefficient in Btu/(ft2-hr-deg F) A = Area in square feet T1 = outdoor temperature in degrees F T2 = indoor temperature in degrees F For heat gains due to people, equipment (hooded and unhooded), and lighting
The SI unit of power for heating and cooling systems is the watt. Btu per hour (Btu/h) is sometimes used in North America and the United Kingdom - the latter for air conditioning mainly, though "Btu/h" is sometimes abbreviated to just "Btu". [18] MBH—thousands of Btu per hour—is also common. [19] 1 W is approximately 3.412142 Btu/h [20]
BTUs measure just how powerful your air conditioner is.
In those contexts, the unit of heat capacity is 1 BTU/°R ≈ 1900 J/K. [5] The BTU was in fact defined so that the average heat capacity of one pound of water would be 1 BTU/°F. In this regard, with respect to mass, note conversion of 1 Btu/lb⋅°R ≈ 4,187 J/kg⋅K [6] and the calorie (below).
For example, consider a 5000 BTU/h (1465-watt cooling capacity) air-conditioning unit, with a SEER of 10 BTU/(W·h), operating for a total of 1000 hours during an annual cooling season (e.g., 8 hours per day for 125 days). The annual total cooling output would be: 5000 BTU/h × 8 h/day × 125 days/year = 5,000,000 BTU/year
The SI unit is watt (W). Another unit common in non-metric regions or sectors is the ton of refrigeration, which describes the amount of water at freezing temperature that can be frozen in 24 hours, equivalent to 3.5 kW or 12,000 BTU/h. [1] [2] [3]