When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    A differentiable function f is (strictly) concave on an interval if and only if its derivative function f ′ is (strictly) monotonically decreasing on that interval, that is, a concave function has a non-increasing (decreasing) slope. [3] [4] Points where concavity changes (between concave and convex) are inflection points. [5]

  3. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    The term convex is often referred to as convex down or concave upward, and the term concave is often referred as concave down or convex upward. [3] [4] [5] If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph .

  4. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  5. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    The first-derivative test depends on the "increasingdecreasing test", which is itself ultimately a consequence of the mean value theorem. It is a direct consequence of the way the derivative is defined and its connection to decrease and increase of a function locally, combined with the previous section.

  6. Logarithmically concave function - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    The following are among the properties of log-concave distributions: If a density is log-concave, so is its cumulative distribution function (CDF). If a multivariate density is log-concave, so is the marginal density over any subset of variables. The sum of two independent log-concave random variables is log-concave. This follows from the fact ...

  7. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    A rising point of inflection is a point where the derivative is positive on both sides of the point; in other words, it is an inflection point near which the function is increasing. For a smooth curve given by parametric equations , a point is an inflection point if its signed curvature changes from plus to minus or from minus to plus, i.e ...

  8. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    In more advanced mathematics the monotone convergence theorem usually refers to a fundamental result in measure theory due to Lebesgue and Beppo Levi that says that for sequences of non-negative pointwise-increasing measurable functions (), taking the integral and the supremum can be interchanged with the result being finite if either one is ...

  9. Logarithmically concave sequence - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    In mathematics, a sequence a = (a 0, a 1, ..., a n) of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if a i 2 ≥ a i−1 a i+1 holds for 0 < i < n. Remark: some authors (explicitly or not) add two further conditions in the definition of log-concave sequences: a is non-negative