Search results
Results From The WOW.Com Content Network
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...
Similar right triangles illustrating the tangent and secant trigonometric functions Trigonometric functions and their reciprocals on the unit circle. The Pythagorean theorem applied to the blue triangle shows the identity 1 + cot 2 θ = csc 2 θ, and applied to the red triangle shows that 1 + tan 2 θ = sec 2 θ.
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
The y-axis ordinates of A, B and D are sin θ, tan θ and csc θ, respectively, while the x-axis abscissas of A, C and E are cos θ, cot θ and sec θ, respectively. Signs of trigonometric functions in each quadrant. Mnemonics like "all students take calculus" indicates when sine, cosine, and tangent are positive from quadrants I to IV. [8]
Euler's formula states that, for any real number x, one has = + , where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted cis x ("cosine plus i sine").
In particular, when x = y, this gives Unsöld's theorem [20] = () = + which generalizes the identity cos 2 θ + sin 2 θ = 1 to two dimensions. In the expansion ( 1 ), the left-hand side P ℓ ( x ⋅ y ) {\displaystyle P_{\ell }(\mathbf {x} \cdot \mathbf {y} )} is a constant multiple of the degree ℓ zonal spherical harmonic .
The analog of the Pythagorean trigonometric identity holds: [2] sin 2 X + cos 2 X = I {\displaystyle \sin ^{2}X+\cos ^{2}X=I} If X is a diagonal matrix , sin X and cos X are also diagonal matrices with (sin X ) nn = sin( X nn ) and (cos X ) nn = cos( X nn ) , that is, they can be calculated by simply taking the sines or cosines of the ...