When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    A sequence that does not converge is said to be divergent. [3] The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests. [1] Limits can be defined in any metric or topological space, but are usually first encountered in the real numbers.

  3. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    The definition of convergence in distribution may be extended from random vectors to more general random elements in arbitrary metric spaces, and even to the “random variables” which are not measurable — a situation which occurs for example in the study of empirical processes. This is the “weak convergence of laws without laws being ...

  4. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (,,, …) defines a series S that is denoted = + + + = =. The n th partial sum S n is the sum of the first n terms of the sequence; that is,

  5. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).

  6. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    The following result is a generalisation of the monotone convergence of non negative sums theorem above to the measure theoretic setting. It is a cornerstone of measure and integration theory with many applications and has Fatou's lemma and the dominated convergence theorem as direct consequence.

  7. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    Absolute convergence is important for the study of infinite series, because its definition guarantees that a series will have some "nice" behaviors of finite sums that not all convergent series possess. For instance, rearrangements do not change the value of the sum, which is not necessarily true for conditionally convergent series.

  8. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Series with sequences of partial sums that converge to a value but whose terms could be rearranged to a form a series with partial sums that converge to some other value are called conditionally convergent series. Those that converge to the same value regardless of rearrangement are called unconditionally convergent series.

  9. Convergence of measures - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_measures

    For (,) a measurable space, a sequence μ n is said to converge setwise to a limit μ if = ()for every set .. Typical arrow notations are and .. For example, as a consequence of the Riemann–Lebesgue lemma, the sequence μ n of measures on the interval [−1, 1] given by μ n (dx) = (1 + sin(nx))dx converges setwise to Lebesgue measure, but it does not converge in total variation.