When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  3. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Let be a real-valued monotone function defined on an interval. Then the set of discontinuities of the first kind is at most countable.. One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind.

  4. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.

  5. Helly's selection theorem - Wikipedia

    en.wikipedia.org/wiki/Helly's_selection_theorem

    A more general version of the theorem asserts compactness of the space BV loc of functions locally of bounded total variation that are uniformly bounded at a point. The theorem has applications throughout mathematical analysis. In probability theory, the result implies compactness of a tight family of measures.

  6. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    The topmost point in the middle shows f(1/2) = 1/2. ... so its points of discontinuity are dense within the real numbers. Proof of discontinuity at rational numbers.

  7. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A point where a function is discontinuous is called a discontinuity. Using mathematical notation, several ways exist to define continuous functions in the three senses mentioned above. Let : be a function defined on a subset of the set of real numbers.

  8. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    Every discontinuity of a Darboux function is essential, that is, at any point of discontinuity, at least one of the left hand and right hand limits does not exist. An example of a Darboux function that is discontinuous at one point is the topologist's sine curve function:

  9. Macaulay brackets - Wikipedia

    en.wikipedia.org/wiki/Macaulay_brackets

    With this, all the forces acting on a beam can be added, with their respective points of action being the value of a. A particular case is the unit step function , x − a 0 ≡ { x − a } 0 = { 0 , x < a 1 , x > a . {\displaystyle \langle x-a\rangle ^{0}\equiv \{x-a\}^{0}={\begin{cases}0,&x<a\\1,&x>a.\end{cases}}}