Search results
Results From The WOW.Com Content Network
The symbol was introduced originally in 1770 by Nicolas de Condorcet, who used it for a partial differential, and adopted for the partial derivative by Adrien-Marie Legendre in 1786. [3] It represents a specialized cursive type of the letter d , just as the integral sign originates as a specialized type of a long s (first used in print by ...
Deutsch: Dieses Dokument listet 20323 Symbole und die dazugehörigen LaTeX-Befehle auf. Manche Symbole sind in jedem LaTeX-2ε-System verfügbar; andere benötigen zusätzliche Schriftarten oder Pakete, die nicht notwendig in jeder Distribution mitgeliefert werden und daher selbst installiert werden müssen.
The Schwarzschild metric can also be derived using the known physics for a circular orbit and a temporarily stationary point mass. [1] Start with the metric with coefficients that are unknown coefficients of r {\displaystyle r} :
for the first derivative, for the second derivative, for the third derivative, and for the nth derivative. When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken.
Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by
The exterior Schwarzschild solution with r > r s is the one that is related to the gravitational fields of stars and planets. The interior Schwarzschild solution with 0 ≤ r < r s, which contains the singularity at r = 0, is completely separated from the outer patch by the singularity at r = r s. The Schwarzschild coordinates therefore give no ...
If the derivative does not lie on the tangent space, the right expression is the projection of the derivative over the tangent space (see covariant derivative below). Symbols of the second kind decompose the change with respect to the basis, while symbols of the first kind decompose it with respect to the dual basis.
An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".