Search results
Results From The WOW.Com Content Network
In number theory, Bertrand's postulate is the theorem that for any integer >, there exists at least one prime number with n < p < 2 n − 2. {\displaystyle n<p<2n-2.} A less restrictive formulation is: for every n > 1 {\displaystyle n>1} , there is always at least one prime p {\displaystyle p} such that
In mathematics, Bertrand's postulate (now a theorem) states that, for each , there is a prime such that < <.First conjectured in 1845 by Joseph Bertrand, [1] it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan.
Copeland and Erdős's proof that their constant is normal relies only on the fact that is strictly increasing and = + (), where is the n th prime number. More generally, if is any strictly increasing sequence of natural numbers such that = + and is any natural number greater than or equal to 2, then the constant obtained by concatenating "0."
Proof of Bertrand's postulate; Fermat's theorem on sums of two squares; Two proofs of the Law of quadratic reciprocity; Proof of Wedderburn's little theorem asserting that every finite division ring is a field; Four proofs of the Basel problem; Proof that e is irrational (also showing the irrationality of certain related numbers) Hilbert's ...
Daniel Larsen (born 2003) is an American mathematician known for proving [1] a 1994 conjecture of W. R. Alford, Andrew Granville and Carl Pomerance on the distribution of Carmichael numbers, commonly known as Bertrand's postulate for Carmichael numbers. [2]
Illustration for a proof of the Erdős–Anning theorem. Given three non-collinear points A, B, C with integer distances from each other (here, the vertices of a 3–4–5 right triangle), the points whose distances to A and B differ by an integer lie on a system of hyperbolas and degenerate hyperbolas (blue), and symmetrically the points whose distances to B and C differ by an integer lie on ...
The Erdős–Woods numbers can be characterized in terms of certain partitions of the prime numbers.A number k is an Erdős–Woods number if and only if the prime numbers less than k can be partitioned into two subsets X and Y with the following property: for every pair of positive integers x and y with x + y = k, either x is divisible by a prime in X, or y is divisible by a prime in Y.
Bertrand, an 1865 steamboat that sank in the Missouri River; Bertrand Baudelaire, a fictional character in A Series of Unfortunate Events; Bertrand competition, an economic model where firms compete on price; Bertrand's theorem, a theorem in classical mechanics; Bertrand's postulate, a theorem about the distribution of prime numbers