Search results
Results From The WOW.Com Content Network
A G-type main-sequence star (spectral type: G-V), also often, and imprecisely, called a yellow dwarf, or G star, is a main-sequence star (luminosity class V) of spectral type G. Such a star has about 0.9 to 1.1 solar masses and an effective temperature between about 5,300 and 6,000 K (5,000 and 5,700 °C ; 9,100 and 10,000 °F ).
The Sun is a G-type main-sequence star (G2V), informally called a yellow dwarf, though its light is actually white. It formed approximately 4.6 billion [a] years ago from the gravitational collapse of matter within a region of a large molecular cloud.
The greater the distance in the atmosphere through which the sunlight travels, the greater this effect, which is why the sun looks orange or red at dawn and sunset when the sunlight is travelling very obliquely through the atmosphere — progressively more of the blues and greens are removed from the direct rays, giving an orange or red ...
Here's a breakdown of how and why it all happens. ... Light has to pass through a larger part of the atmosphere when the sun is lower on the horizon. Red, orange and yellow have longer wavelengths ...
The Sun is a G-type main-sequence star (G2V) based on spectral class, and it is informally designated as a yellow dwarf because its visible radiation is most intense in the yellow-green portion of the spectrum. It is actually white, but from the Earth's surface, it appears yellow because of atmospheric scattering of blue light. [9]
Yellow skies are a natural, but rare phenomenon. For premium support please call: 800-290-4726 more ways to reach us
The sun often begins to set at the time of the day when a thunderstorm happens. “The orange hue is caused by the same process that causes the vivid colors at sunsets,” NOAA said in a blog post.
The main sequence is sometimes divided into upper and lower parts, based on the dominant process that a star uses to generate energy. The Sun, along with main sequence stars below about 1.5 times the mass of the Sun (1.5 M ☉), primarily fuse hydrogen atoms together in a series of stages to form helium, a sequence called the proton–proton chain.