Search results
Results From The WOW.Com Content Network
Beam search with width 3 (animation) In computer science, beam search is a heuristic search algorithm that explores a graph by expanding the most promising node in a limited set. Beam search is a modification of best-first search that reduces its memory requirements. Best-first search is a graph search which orders all partial solutions (states ...
Beam stack search [1] is a search algorithm that combines chronological backtracking (that is, depth-first search) with beam search and is similar to depth-first beam search. [2] Both search algorithms are anytime algorithms that find good but likely sub-optimal solutions quickly, like beam search, then backtrack and continue to find improved ...
A* is an informed search algorithm, or a best-first search, meaning that it is formulated in terms of weighted graphs: starting from a specific starting node of a graph, it aims to find a path to the given goal node having the smallest cost (least distance travelled, shortest time, etc.).
Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...
The general algorithm involves message passing and is substantially similar to the belief propagation algorithm (which is the generalization of the forward-backward algorithm). With an algorithm called iterative Viterbi decoding , one can find the subsequence of an observation that matches best (on average) to a given hidden Markov model.
Let S be the number of particles in the swarm, each having a position x i ∈ ℝ n in the search-space and a velocity v i ∈ ℝ n. Let p i be the best known position of particle i and let g be the best known position of the entire swarm. A basic PSO algorithm to minimize the cost function is then: [9]
The aim of local search is that of finding an assignment of minimal cost, which is a solution if any exists. Point A is not a solution, but no local move from there decreases cost. However, a solution exists at point B. Two classes of local search algorithms exist. The first one is that of greedy or non-randomized algorithms. These algorithms ...
SMA* has the following properties It works with a heuristic, just as A*; It is complete if the allowed memory is high enough to store the shallowest solution; It is optimal if the allowed memory is high enough to store the shallowest optimal solution, otherwise it will return the best solution that fits in the allowed memory