Search results
Results From The WOW.Com Content Network
In Python, a generator can be thought of as an iterator that contains a frozen stack frame. Whenever next() is called on the iterator, Python resumes the frozen frame, which executes normally until the next yield statement is reached. The generator's frame is then frozen again, and the yielded value is returned to the caller.
Specifically, the for loop will call a value's into_iter() method, which returns an iterator that in turn yields the elements to the loop. The for loop (or indeed, any method that consumes the iterator), proceeds until the next() method returns a None value (iterations yielding elements return a Some(T) value, where T is the element type).
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
Specifically, while both can yield multiple times, suspending their execution and allowing re-entry at multiple entry points, they differ in coroutines' ability to control where execution continues immediately after they yield, while generators cannot, instead transferring control back to the generator's caller. [9]
Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. [33] Python is dynamically type-checked and garbage-collected. It supports multiple programming paradigms, including structured (particularly procedural), object-oriented and functional ...
It implicitly calls the IntoIterator::into_iter method on the expression, and uses the resulting value, which must implement the Iterator trait. If the expression is itself an iterator, it is used directly by the for loop through an implementation of IntoIterator for all Iterators that returns the iterator unchanged.
In version 2.2 of Python, "new-style" classes were introduced. With new-style classes, objects and types were unified, allowing the subclassing of types. Even entirely new types can be defined, complete with custom behavior for infix operators. This allows for many radical things to be done syntactically within Python.
In general, the following identity holds for all non-negative integers m and n, = = + . This is structurally identical to the property of exponentiation that a m a n = a m + n.. In general, for arbitrary general (negative, non-integer, etc.) indices m and n, this relation is called the translation functional equation, cf. Schröder's equation and Abel equation.