When.com Web Search

  1. Ad

    related to: gaussian process explained

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    Inference of continuous values with a Gaussian process prior is known as Gaussian process regression, or kriging; extending Gaussian process regression to multiple target variables is known as cokriging. [26] Gaussian processes are thus useful as a powerful non-linear multivariate interpolation tool. Kriging is also used to extend Gaussian ...

  3. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/.../Neural_network_Gaussian_process

    A Neural Network Gaussian Process (NNGP) is a Gaussian process (GP) obtained as the limit of a certain type of sequence of neural networks. Specifically, a wide variety of network architectures converges to a GP in the infinitely wide limit , in the sense of distribution .

  4. Kriging - Wikipedia

    en.wikipedia.org/wiki/Kriging

    In statistics, originally in geostatistics, kriging or Kriging (/ ˈ k r iː ɡ ɪ ŋ /), also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging gives the best linear unbiased prediction (BLUP) at unsampled locations. [1]

  5. Gaussian random field - Wikipedia

    en.wikipedia.org/wiki/Gaussian_random_field

    In statistics, a Gaussian random field (GRF) is a random field involving Gaussian probability density functions of the variables. A one-dimensional GRF is also called a Gaussian process . An important special case of a GRF is the Gaussian free field .

  6. Gauss–Markov process - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov_process

    Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.

  7. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    For a Gaussian process, all sets of values have a multidimensional Gaussian distribution. Analogously, () is a Student t process on an interval = [,] if the correspondent values of the process (), …

  8. Bayesian optimization - Wikipedia

    en.wikipedia.org/wiki/Bayesian_optimization

    Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [8]Bayesian optimization is typically used on problems of the form (), where is a set of points, , which rely upon less (or equal to) than 20 dimensions (,), and whose membership can easily be evaluated.

  9. Ornstein–Uhlenbeck process - Wikipedia

    en.wikipedia.org/wiki/Ornstein–Uhlenbeck_process

    The Ornstein–Uhlenbeck process is an example of a Gaussian process that has a bounded variance and admits a stationary probability distribution, in contrast to the Wiener process; the difference between the two is in their "drift" term. For the Wiener process the drift term is constant, whereas for the Ornstein–Uhlenbeck process it is ...