Search results
Results From The WOW.Com Content Network
Radon transform. Maps f on the (x, y)-domain to Rf on the (α, s)-domain.. In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line.
Inverse two-sided Laplace transform; Laplace–Carson transform; Laplace–Stieltjes transform; Legendre transform; Linear canonical transform; Mellin transform. Inverse Mellin transform; Poisson–Mellin–Newton cycle; N-transform; Radon transform; Stieltjes transformation; Sumudu transform; Wavelet transform (integral) Weierstrass transform ...
Radon [1] was born in Tetschen, Bohemia, Austria-Hungary, now Děčín, Czech Republic.He received his doctoral degree at the University of Vienna in 1910. He spent the winter semester 1910/11 at the University of Göttingen, then he was an assistant at the German Technical University in Brno, and from 1912 to 1919 at the Technical University of Vienna.
Tomographic reconstruction: Projection, Back projection and Filtered back projection. Tomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections.
John's equation is an ultrahyperbolic partial differential equation satisfied by the X-ray transform of a function. It is named after German-American mathematician Fritz John . Given a function f : R n → R {\displaystyle f\colon \mathbb {R} ^{n}\rightarrow \mathbb {R} } with compact support the X-ray transform is the integral over all lines ...
In the mathematical field of integral geometry, the Funk transform (also known as Minkowski–Funk transform, Funk–Radon transform or spherical Radon transform) is an integral transform defined by integrating a function on great circles of the sphere. It was introduced by Paul Funk in 1911, based on the work of Minkowski (1904).
Take a two-dimensional function f(r), project (e.g. using the Radon transform) it onto a (one-dimensional) line, and do a Fourier transform of that projection. Take that same function, but do a two-dimensional Fourier transform first, and then slice it through its origin, which is parallel to the projection line. In operator terms, if
A central problem of integral geometry is to reconstruct a function from knowledge of its orbital integrals. The Funk transform and Radon transform are two special cases. When G/K is a Riemannian symmetric space, the problem is trivial, since M r ƒ(x) is the average value of ƒ over the generalized sphere of radius r, and