Ad
related to: stimulated emission diagram labeled blood flow
Search results
Results From The WOW.Com Content Network
Stimulated emission was a theoretical discovery by Albert Einstein within the framework of the old quantum theory, wherein the emission is described in terms of photons that are the quanta of the EM field. [5] [6] Stimulated emission can also occur in classical models, without reference to photons or quantum-mechanics.
After a period of time in microseconds (enough to allow the blood to circulate through the brain), a 'label' image is captured. A 'control' image is also acquired before the labeling of the blood water. A subtraction technique gives a measurement of perfusion. In order to increase SNR, collections of control and label images can be averaged.
Spectral overlap happens when a fluorophore has a broad emission specter, that overlaps with the specter of another fluorophore, thus giving rise to false signals. Non-specific staining occurs when the antibody, containing the fluorophore, binds to unintended proteins because of sufficient similarity in the epitope. This can lead to false ...
Stimulated emission depletion (STED) microscopy is one of the techniques that make up super-resolution microscopy. It creates super-resolution images by the selective deactivation of fluorophores , minimizing the area of illumination at the focal point, and thus enhancing the achievable resolution for a given system. [ 1 ]
Schematic diagram of atomic stimulated emission. Stimulated emission (also known as induced emission) is the process by which an electron is induced to jump from a higher energy level to a lower one by the presence of electromagnetic radiation at (or near) the frequency of the transition. From the thermodynamic viewpoint, this process must be ...
Emissions from the radionuclide indicate amounts of blood flow in the capillaries of the imaged regions. In the same way that a plain X-ray is a 2-dimensional (2-D) view of a 3-dimensional structure, the image obtained by a gamma camera is a 2-D view of 3-D distribution of a radionuclide .
Blood resistance varies depending on blood viscosity and its plugged flow (or sheath flow since they are complementary across the vessel section) size as well, and on the size of the vessels. Assuming steady, laminar flow in the vessel, the blood vessels behavior is similar to that of a pipe.
Glomus type I cells are peripheral chemoreceptors which sense the oxygen, carbon dioxide and pH levels of the blood. When there is a decrease in the blood's pH , a decrease in oxygen (pO 2 ), or an increase in carbon dioxide ( pCO 2 ), the carotid bodies and the aortic bodies signal the dorsal respiratory group in the medulla oblongata to ...