When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos ⁡ φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone angle, i.e., φ is the angle between the rim of the cap and the direction ...

  3. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    A cone and a cylinder have radius r and height h. 2. The volume ratio is maintained when the height is scaled to h' = r √ π. 3. Decompose it into thin slices. 4. Using Cavalieri's principle, reshape each slice into a square of the same area. 5. The pyramid is replicated twice. 6. Combining them into a cube shows that the volume ratio is 1:3.

  4. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    In the 3rd century BC, Archimedes, using a method resembling Cavalieri's principle, [5] was able to find the volume of a sphere given the volumes of a cone and cylinder in his work The Method of Mechanical Theorems. In the 5th century AD, Zu Chongzhi and his son Zu Gengzhi established a similar method to find a sphere's volume. [2]

  5. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    Spherical cap. An example of a spherical cap in blue (and another in red) In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane.

  6. Hypercone - Wikipedia

    en.wikipedia.org/wiki/Hypercone

    In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation. It is a quadric surface, and is one of the possible 3- manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions. It is also named "spherical cone" because its intersections with hyperplanes ...

  7. Pappus's centroid theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_centroid_theorem

    The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...

  8. Steradian - Wikipedia

    en.wikipedia.org/wiki/Steradian

    h is the height of the cap, and sr is the unit, steradian. Because the surface area A of a sphere is 4 πr 2 , the definition implies that a sphere subtends 4 π steradians (≈ 12.56637 sr) at its centre, or that a steradian subtends 1/4 π ≈ 0.07958 of a sphere.

  9. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    The sphere has the smallest surface area of all surfaces that enclose a given volume, and it encloses the largest volume among all closed surfaces with a given surface area. [11] The sphere therefore appears in nature: for example, bubbles and small water drops are roughly spherical because the surface tension locally minimizes surface area.